
Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 2

Outline of the Lecture
� Addressing Data in Memory
� Execution Unit and Bus Interface Unit
� Registers of Microprocessor

Addressing Data in Memory
Depending on the model, the processor can access one or more bytes of memory at a
time. Consider the Hexa value (0529H) which requires two bytes. It consist of high order
(most significant) byte 05 and a low order (least significant) byte 29. The processor store
the data in memory in reverse byte sequence i.e. the low order byte in the low memory
address and the high order byte in the high memory address. For example, the processor
transfer the value 0529H from a register into memory addresses 04A26 H and 04A27H
like this:

Memory addressing schemes:

1. An Absolute Address, such as 04A26H, is a 20 bit value that directly references
a specific location.

2. A Segment Offset Address combines the starting address of a segment with an
offset value.

Segment and offset:
Segments are special area defined in a program for containing the code, the data, and the
stack. Segment Offset within a program, all memory locations within a segment are
relative to the segment starting address. The distance in bytes from the segment address
to another location within the segment is expressed as an offset (or displacement).
A segment is an area of memory that includes up to 64K bytes as shown in the following
figures.
The offset address is always added to the segment starting address to locate the
data.
All real mode memory addresses must consist of a segment address plus an offset
address. –Segment address defines the beginning address of any 64K-byte memory
segment offset address selects any location within the64K byte memory segment.

Linear and Segmented MemoryLinear and Segmented Memory

The real mode memory-addressing scheme, using a segment address plus an offset.
Assembly Language Program consists of three segments:
� Code segment: contains the program code (instructions)
� Data segment: used to store data (information) to be processed by the program
� Stack segment: used to store information temporarily.

Specifying addresses
To reference any memory location in a segment, the
address in a segment register with the offset
byte from the start of the segment.
To represent a segment address and its relative offset we use the

Thus 020A:1BCD denotes offset 1BCDH from segment 020AH.
The actual address it refers to is obtained in the following way:

1. Add zero to the right hand side of the segment address.
2. Add to this the offset.

Hence the actual address referred to by 020A:1BCD is 03C6D.
Address Bus in the 8086 is 20 bits wide (20 lines) i.e. the processor
of size (1MB).
Instruction Pointer = 16 bit register which means the processor can
bytes of memory. But we need to
can be solved by using memory
Logical and Physical Address
� Physical Address is the 20

8086)• Has a range of 00000H
� Offset Address is a location within 64K byte segment range.

0000H - FFFFH
� Logical Address consists of segment address and offset address.

Addressing in Code segment
The logical address of an instruction consists
pointer)

Example: CS:IP => 2500:95F3H
1. Start with CS 2500
2. Shift left CS 25000
3. Add IP 2E5F3 (25000+95F3)

Ex: If CS=24F6H and IP=634AH, determine:
a) The logical address
b) The offset address
c) The physical address
d) The lower range of the code segment
e) The upper range of the code segment

addressing scheme, using a segment address plus an offset.
Assembly Language Program consists of three segments:

contains the program code (instructions)
used to store data (information) to be processed by the program

: used to store information temporarily.

To reference any memory location in a segment, the processor combines
address in a segment register with the offset value of that location, that is, its distance in

the segment.
segment address and its relative offset we use the notation:

Segment: offset
Thus 020A:1BCD denotes offset 1BCDH from segment 020AH.
The actual address it refers to is obtained in the following way:

Add zero to the right hand side of the segment address.
dd to this the offset.

Hence the actual address referred to by 020A:1BCD is 03C6D.
Address Bus in the 8086 is 20 bits wide (20 lines) i.e. the processor can access memory

Instruction Pointer = 16 bit register which means the processor can only address (65535)
bytes of memory. But we need to write instructions in any of the 1MB of memory. This

memory segmentation, where each segment registers
Logical and Physical Address

is the 20-bit address that actually put on the address bus. (in
Has a range of 00000H – FFFFFH.

is a location within 64K byte segment range. Has a range of

consists of segment address and offset address.
Addressing in Code segment
The logical address of an instruction consists of CS (Code Segment) and IP

: CS:IP => 2500:95F3H

2E5F3 (25000+95F3)
If CS=24F6H and IP=634AH, determine:

range of the code segment

The upper range of the code segment

addressing scheme, using a segment address plus an offset.

used to store data (information) to be processed by the program

 the segment
value of that location, that is, its distance in

can access memory

ly address (65535)
write instructions in any of the 1MB of memory. This

registers is 16-bit

bit address that actually put on the address bus. (in

as a range of

IP (instruction

Ans:
a) The logical address is; 24F6:634A
b) The offset address is; 634A
c) The Physical address is; 24F60+634A= 2B2AA
d) The lower range of the code segment: 24F6:0000 => 24F60+0000 =24F60
e) The upper range of the code segment: 24F6:FFFF => 24F60+FFFF=34F5F

Addressing in Data segment
� The area of memory allocated strictly for data is called data segment.
� The data segment uses DS and BX, SI and DI are used to hold the offset address.

Ex: If DS=7FA2H and the offset is 438EH, determine:
a) The physical address
b) The lower range of the data segment
c) The upper range of the data segment
d) Show the logical address

Ans:
a) The Physical address is; 7FA20+438E= 83DAE
b) The lower range: 7FA20(7FA20+0000)
c) The upper range: 8FA1F(7FA20+FFFF)
d) The logical address is; 7FA2:438E

Addressing in Stack segment
Calculating the physical address for the stack, the same principle is applied as was used
for the code and data segments. Physical address depends on the value of stack segment
(SS) register and the stack pointer (SP).
Ex: If SS=3500H and SP:FFFEH

a) Calculate the physical address: 35000+FFFE = 44FFE
b) Calculate the lower range of the stack: 35000+0000 = 35000
c) Calculate the upper range of the stack segment: 35000+FFFF = 44FFF
d) Show the logical address of the stack: 3500:FFFE

Execution Unit and Bus Interface Unit
The processor is partitioned into two logical units as shown in figure:

1. Execution Unit (EU) to execute instruction and perform arithmetic and logical
operations. The EU contains ALU, CU and number of registers.

2. Bus Interface Unit (BIU) to deliver the instruction and data to EU. The most
important function of BIU is to manage the bus control unit, segment registers and
instruction queue.

Another function of the BIU is to provide access to instructions, because the instructions
for a program that is executing are kept in memory, the BIU must access instruction from
memory and place them in an instruction queue, which varies in size depending on the
processor. This feature enables the BIU to look ahead and prefetch instructions, so that
there is always a queue of instructions ready to execute.
The EU and BIU work in parallel, The top instruction is the currently executable one, and
while the EU is occupied executing an instruction, the BIU fetch another instruction from
memory. This fetching overlaps with execution and speeds up processing.

Execution unit and Bus interface unit.
Registers of Microprocessor

In the CPU, registers are used
bit high speed storage locations directly
higher speed than conventional memory.
The bits of the registers are numbered in descending order:
For 8-bit register:

For 16-bit register:

Execution unit and Bus interface unit.
Registers of Microprocessor

In the CPU, registers are used to store information temporarily. Registers are 8, 16, or 32
bit high speed storage locations directly inside the CPU, designed to be accessed at much

conventional memory.
The bits of the registers are numbered in descending order:

Registers are 8, 16, or 32-
inside the CPU, designed to be accessed at much

Types of registers (see the figure above)
1. General purpose registers (Data Registers)

movement. Each register can be addressed as either 16
Example, AX register is a 16
lower 8-bit is called AL.

In 8088/8086 general-purpose registers can be accessed as either
All other registers can be accessed as full 16

Different registers are used for different functions.
 AX is used for the accumulator
operations.

 BX is used for base addressing register
variable. Three other registers with
can also perform arithmetic and data movement

 CX is used for counter loop operations
and decrement CX.

 DX is used to point out
multiply and divide operation

2. Segment Registers:
location for program instruction, and for the stack.

 CS (Code Segment): The code segment register holds the
executable instructions (code) in a

Intel 16-bit registers
Types of registers (see the figure above)

General purpose registers (Data Registers): are used for arithmetic and data
movement. Each register can be addressed as either 16-bit or 8 bit value.

AX register is a 16-bit register, its upper 8-bit is called AH, and its
bit is called AL.

purpose registers can be accessed as either 16-bit or 8
registers can be accessed as full 16-bit registers.

sed for different functions.

accumulator because it is favored by the CPU for arithmetic

base addressing register hold the address of a
variable. Three other registers with this ability are SI, DI and BP. The BX register

arithmetic and data movement.
counter loop operations. These instructions automatically repeat

is used to point out data in I/O operations DX register has a special role in
divide operation.

Segment Registers: the CPU contain four segment registers, used as base
location for program instruction, and for the stack.

(Code Segment): The code segment register holds the base address
ble instructions (code) in a program.

: are used for arithmetic and data
bit or 8 bit value.

bit is called AH, and its

bit or 8-bit registers.

it is favored by the CPU for arithmetic

 procedure or
are SI, DI and BP. The BX register

automatically repeat

a special role in

used as base

address of all

 DS (Data Segment): the data segment register is the default base location for
variables.

 SS (Stack Segment): the stack segment register contain the base location of the
stack.

 ES (Extra Segment): The extra segment register is an additional base location for
memory variables.

3. Index registers: index registers contain the offset of data and instructions. The
term offset refers to the distance of a variable, label, or instruction from its base
segment. The index registers are:

 BP (Base Pointer): the BP register contain an assumed offset from the stack
segment register, as does the stack pointer.

 SP (Stack Pointer): the stack pointer register contain the offset of the top of the
stack. The stack pointer and the stack segment register combine to form the
complete address of the top of the stack.

 SI (Source Index): This register takes its name from the string movement
instruction

 DI (Destination Index): the DI register acts as the destination for string movement
instruction.

4. Status and Control register:
 IP (Instruction Pointer): The instruction pointer register always contain the offset
of the next instruction to be executed within the current code segment. The
instruction pointer and the code segment register combine to form the complete
address of the next instruction.

 Flag Registers and bit fields
The flag register is a 16-bit register sometimes referred as the status register. Not all the
bits are used.
The Flag Register: is a special register with individual bit positions assigned to show the
status of the CPU or the result of arithmetic operations.
There two basic types of flags: (control flags and status flags)
Control flags: 6 of the flags are called the conditional flags, meaning that they indicate
some condition that resulted after an instruction was executed. These 6 are: CF, PF, AF,
ZF, SF, and OF.
Individual bits can be set in the flag register by the programmer to control the CPU
operation, these are

The 16 bits of the flag registers:

� CF, the Carry Flag:
after an 8-bit operation or from d15 after a 16
and 99 where stored in the 8
1. The flag values = 1 = carry, 0 = no carry
� PF, the Parity Flag:

byte is checked. If the byte has an even number of 1s, the parity flag is set to 1;
otherwise, it is cleared.
by communication software to verify the
� AF, the Auxiliary Carry Flag:

bit 4 to bit 3) of an operation this bit is set to 1, otherwise cleared (set to 0).
� ZF, the Zero Flag:

operation is zero; otherwise, it is cleared (set to 0).
� SF, the Sign Flag: MSB is used as th

signed numbers. After arithmetic or logical operations the MSB is copied into SF
to indicate the sign of the result.
� OF, the Overflow Flag:

operation is too large, causing the high
flag values 1 = overflow, 0 = no overflow

Status flags
� TF, the Trap Flag:

meaning to execute one instruction at a time. Used for debugging purposes
flag values are 1 = on, 0 = off
� IF, Interrupt Enable

external interrupt requests
The flag values are 1= enable, 0 = disable.
� DF, the Direction Flag:

operations and used for
SCAS, it selects increment or decrement mode for the DI and/or SI registers

Registers of 8086/8088

the Carry Flag: This flag is set whenever there is a carry out, either from d7
bit operation or from d15 after a 16-bit data operation. if the sum of 71

stored in the 8-bit register AL, the result cause the carry
1. The flag values = 1 = carry, 0 = no carry.

, the Parity Flag: After certain operations, the parity of the result’s low
byte is checked. If the byte has an even number of 1s, the parity flag is set to 1;
otherwise, it is cleared. This flag is used by the OS to verify memory
by communication software to verify the correct transmission of data

, the Auxiliary Carry Flag: If there is a carry from d3 to d4 (or borrow from
of an operation this bit is set to 1, otherwise cleared (set to 0).

, the Zero Flag: The ZF is set to 1 if the result of the arithmetic or logical
otherwise, it is cleared (set to 0).

MSB is used as the sign bit of the binary representation of the
signed numbers. After arithmetic or logical operations the MSB is copied into SF
to indicate the sign of the result. The flag values 1=negative, 0 = positive

, the Overflow Flag: This flag is set whenever the result of a signed number
too large, causing the high-order bit to overflow into the sign bit

1 = overflow, 0 = no overflow.

, the Trap Flag: When this flag is set it allows the program to single step,
meaning to execute one instruction at a time. Used for debugging purposes
flag values are 1 = on, 0 = off.

, Interrupt Enable Flag: This bit is set or cleared to enable or disable only the
external interrupt requests as keyboard, disk drive, and the system clock timer
The flag values are 1= enable, 0 = disable.

, the Direction Flag: This bit is used to control the direction of the string
used for block data transfer instructions, such as MOVS, CMPS,

selects increment or decrement mode for the DI and/or SI registers

This flag is set whenever there is a carry out, either from d7
if the sum of 71

bit register AL, the result cause the carry flag to be

After certain operations, the parity of the result’s low-order
byte is checked. If the byte has an even number of 1s, the parity flag is set to 1;

This flag is used by the OS to verify memory integrity and
correct transmission of data.

(or borrow from
of an operation this bit is set to 1, otherwise cleared (set to 0).

The ZF is set to 1 if the result of the arithmetic or logical

e sign bit of the binary representation of the
signed numbers. After arithmetic or logical operations the MSB is copied into SF

negative, 0 = positive
This flag is set whenever the result of a signed number

order bit to overflow into the sign bit. The

When this flag is set it allows the program to single step,
meaning to execute one instruction at a time. Used for debugging purposes. The

This bit is set or cleared to enable or disable only the
and the system clock timer.

ection of the string
instructions, such as MOVS, CMPS,

selects increment or decrement mode for the DI and/or SI registers.

